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ABSTRACT

We present and evaluate HYDRA, a virtualized testbed for
realistic large-scale network simulations. While classic sim-
ulation tools only provide approximations of the protocol
stack, HYDRA virtualizes nodes running a complete Linux
system. Mobility models and connection management inte-
grated into HYDRA allow for the simulation of various wire-
less networking scenarios. Our distributed virtualization ap-
proach achieves excellent scalability and the automated node
setup makes it easy to deploy large setups with hundreds of
nodes. Hardware-in-the-loop simulations are possible, using
HYDRA to augment a testbed of real devices. The ability
to boot a HYDRA node completely from an USB flash drive
enables the user to convert temporarily unused computer
resources into a testbed without the need for any complex
setup.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks|: Network
Protocols Protocol Verification; C.4 [Performance of Sys-
tems]: Measurement techniques; C.2.4 [Computer-Com-
munication Networks]|: Distributed Systems

General Terms

Experimentation, Performance

1. INTRODUCTION

During the development of new networking protocols, ex-
tensive simulation is used to evaluate the approach chosen.
Also, before deploying a large wireless network, usually a
testbed, that is a small scale setup of the components used,
is installed in an controlled environment in order to antici-
pate potential problems before deployment. Even the setup
and configuration of such a small scale version of a realistic
deployment is a time consuming and error-prone task. Large
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scale environments for testing protocols and implementa-
tions are even more challenging to setup. In practice often
those setups are replaced by large scale simulations which
do not run production software but only conceptual approx-
imations specifically crafted to run on top of a simulation
engine. This has the significant drawback, that apart from
simplified assumptions about the environment, the protocol
implementations in the simulator are also often not iden-
tical to the real world implementation. This can severely
limit the validity of simulation results when trying to make
predictions about real-world performance.

In this paper we present HYDRA, a distributed testbed
that runs virtualized nodes with a full operating system and
protocol stack. HYDRA provides a highly customizable au-
tomated node setup and a very extensible plugin architec-
ture. We use HYDRA as simulation framework in our re-
search projects in the area of delay tolerant networks, how-
ever HYDRA is not specific to this field and can be used for
any kind of generic network simulation.

In OPTraCom'! we study how DTNs can be used for lo-
cal public transport applications and distributed pollution
measurement within the city area. In order to evaluate new
concepts and thoroughly test developed software before de-
ploying them on embedded hardware in buses and streetcars,
we evaluate and stress test the software using HYDRA.

The NTH project IT-ecosystems? deals with the manage-
ment and controllability of complex systems of systems. It
facilitates a human centric view of complex distributed tech-
nical systems, where humans are not only beneficiaries of
offered services but also act as agents in a DTN network
transferring data between different otherwise disconnected
systems. To be able to evaluate the developed communi-
cation paradigms reasonably, simulations of sufficiently large
scenarios with tens to hundreds of mobile agents are neces-
sary. HYDRA allows testing of the real software under con-
trolled conditions in a large testbed.

The remainder of this paper is organized as follows: In
section 2 we will give an overview of related work. In sec-
tion 3 we present our software architecture. The mobility
and connectivity modules included with HYDRA are detailed
in section 4. We then give the details of our experimental
setup in section 5 followed by a performance and scalability
evaluation in section 6. Finally we give our conclusion and
propose directions of future work.

"http: /www.optracom.de/
*http://www.it-ecosystems.org/



2. RELATED WORK

Network simulators are the tool of choice for developing
novel network protocols and evaluating them in different
wireless networking scenarios. Common variants, among
others, are ns-2, GloMoSim, OMNet++ and JiST/SWANS.
Ns-2[2] uses a dual-language approach, where the simulator
is written in C and simulations are set up using OTcl, a
object oriented variant of the TCL scripting language. Ns-
2 became the most widely used simulator in the MANET
community. GloMoSim[27] is a simulator build upon the
C-based Parsec language specifically designed for parallel
simulations. Development of the open GloMoSim version
ceased in 2002. The technology was continued in form of the
commercial Qualnet simulator. OMNet++-[25] is a modular
discrete event simulation framework written in C+4-. OM-
Net++ is free for non-commercial use and is mostly used for
network simulation. JiST[4] is a Java-based discrete event
simulation engine that augments the Java execution model
with simulation time semantics through the use of tagging
interfaces and bytecode rewriting. SWANS[4] is an AdHoc
network simulator build upon JiST.

While the tools presented so far aim to be generic network
simulators, there are also more specialized simulation envi-
ronments. A premier choice for DTN simulations is the Op-
portunistic Networking Environment (ONE) simulator[15].
The ONE is a Java based simulator offering a broad set of
DTN simulation capabilities. It supports different mobility
models and can import traces from external sources for eval-
uation of routing protocols and applications. The common
DTN protocols are already implemented in this simulator
and an interface for external modules is available.

The advantage of pure simulation tools is, that they are
able to simulate large setups that would not be practical
to test in reality at acceptable speeds. Also, programming
against a simulator is usually easier, since one does not have
to deal with the complexities of hardware, an underlying op-
erating system or a full blown network communication stack.
The disadvantage is, that the protocol layers supplied by the
simulators are only an (often rather rough) approximation
of the protocols simulated. Quite often, for reasons of speed
and simplicity, only the semantics, but not the wire format
of a given protocol is simulated. Depending on the sim-
ulation requirements and the simulator capabilities, lower
layers, such as MAC or radio propagation models, might
not be simulated at all.

A problem with those protocol approximations is, that it
is not quite clear to what extent simulation results can be
transferred to a real world implementation. For instance,
Cavin et. al. showed in [7] that even for simple scenarios
simulations outputs differ significantly between several es-
tablished MANET simulators. Similar results are reported
in [11].

To alleviate this problem network emulators can be used.
The difference between emulation and simulation is, that in
an emulation at least parts of the system are real. For exam-
ple, OppBSD(14] is a full FreeBSD IP stack that can be used
as module in the OMNet++ simulator. JiST/Mobnet[18] is
based on JiST and extends and replaces SWANS to allow for
using JiST/Mobnet as network emulation interacting with
real testbeds. This is achieved by patching real network
interfaces through Mobnet and by supporting the correct
on-wire frame formats in the JiST emulation.

More accurate simulations can be achieved by including

more production code down to the operating system in the
the emulation. For wireless sensor networks there are even
emulators which go down to the hardware level. The em-
ulator for TinyOS is TOSSIM[19]. A TOSSIM simulation
includes the whole TinyOS operating system and runs the
application unmodified on top of it. It even emulates hard-
ware resources such as AD converters found in TinyOS com-
patible hardware. The radio model can operate on the bit
level, allowing the correct simulation of link biterror rates.
The equivalent for Contiki[10], another sensor network OS,
is Cooja[22]. Cooja goes even further: Instead of just run-
ning the operating system and emulating a few abstracted
hardware components, Cooja has the ability to emulate a
MSP430 CPU, which is a commonly used microcontroller
for Contiki based sensor nodes.

Emulab[26] is a software framework for the operation of
large scale networking testbeds. It combines physical nodes
with advanced network emulation capabilities. In contrast
to our approach Emulab needs a fixed infrastructure: It re-
quires dedicated machines which run the Emulab software
distribution and manageable switches from a range of sup-
ported devices. Experiments are set up automatically from
an ns-2 compatible topology specification. Recently Emulab
aquired experimental support for operating system virtual-
ization by using FreeBSD Jails[13]. Because FreeBSD Jails
do not offer hardware virtualization, it is not possible to
use different operating systems using this technique, but as
long as the experiment can be run on FreeBSD this allows
Emulab to multiplex simulation hosts.

Pure testbeds are installations of real hard- and software
for evaluation purposes. They offer the greatest degree of
realism at the cost of flexibility. DieselNet [28] is a testbed
for delay tolerant networking with 40 buses. Each of them
is equipped with a small computer and a harddrive for per-
sistant storage. Additionally a so-called “Throwbox” device
is used for fast deployment of additional stationary routers.
In [8] a DTN demonstrator was presented which controls the
WiFi interface of several nodes. The goal was to evaluate the
performance of the IBR-DTN software stack operating in a
small scale heterogeneous environment. However, the setup
itself is not trivial and does not scale well if many nodes
communicate with the same frequency in a shared area.

Sometimes the lines between emulation and testbeds are
blurred. In general, pure network simulations are the most
flexible tools but their results have to be analyzed carefully
with regard to their validity and transferability to the real
world, while emulation techniques achieve better accuracy
[21]. A physical testbed is the most accurate approximation
of real world applications.

HyYDRA employs virtualization techniques in order to mul-
tiplex a single machine to emulate a number of virtual nodes.
This approach causes some overhead. In [20] Macdonnel and
Lu showed that overhead can be as low as 6 % for CPU in-
tensive jobs and 9.7% for jobs dominated by I/O for x86
based virtualization solutions. The evaluation in [9] reports
an overhead of significantly less than 20 % for most CPU
bound applications running under virtualization. The pa-
per also reports only a small influence on host performance,
when VMs are idle.

In contrast to most other simulation environments HYDRA
runs unmodified applications on top of linux. Thus it can be
used to asses the performance of a concrete implementation
of a network protocol rather than simulating only an ab-
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Figure 1: HYDRA standard hardware setup

stract reimplemention. This makes HYDRA a valuable tool
for the development of networking software. In contrast to
netlab, which also runs real software and stacks, HYDRA is
much more lightweight and can be setup in matter of min-
utes instead of dedicating a complex infrastructure to it.

3. HYDRA ARCHITECTURE

3.1 Hardware setup

Figure 1 shows a typical hardware setup for HYDRA simu-
lations. We differentiate between three types of nodes. The
master runs the emulation logic. It controls and monitors
the other nodes and triggers events like connection up and
down. A slave is a host for virtual nodes. A virtual bridged
network interface connects the virtual nodes to the hard-
ware switch. Note, that real hardware can be transparently
added to the HYDRA setup allowing for hardware-in-the-loop
verification. If desired the network used for controlling the
slave and virtual nodes can be separated from the network
used by the applications running on the Virtual Nodes using
measures such as VLANSs.

On behalf of the master, the slave is preparing and con-
figuring the image files and virtual machine configuration
for its own virtual nodes. We created a bootable Ubunutu
based USB flash drive which included preconfigured software
components needed for the slave. This enables a fast adap-
tation of unused hardware for temporary large scale runs.
Virtual nodes are run by the VirtualBox virtualization soft-
ware [23] and use a standard OpenWRT [1] image for x86
architecture. OpenWRT is a Linux distribution specifically
designed for wireless networking applications. It has very
low CPU and memory requirements, so we are able to run
many nodes on a single standard PC, while still being able
to use virtually all Linux software. Additionally, Open WRT
is used on several embedded networking hardware platforms
and thus provides an excellent platform for developing and
testing of software for embedded wireless devices.

3.2 Software architecture

The software of this emulation setup is written in Python
and has a plugin-like architecture to serve different needs.
Figure 2 shows the main classes of the implementation and
the relations between them. A simulation starts with the
Core which creates controllable objects for slaves and vir-
tual hosts. Both classes uses the Secure Shell Protocol (SSH)

«uses» «uses»

_____________

|
*
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«uses» |

CallbackReceiver

Figure 2: UML diagramm of HYDRA’s classes

wrapped into the SSHConnection class to execute actions on
the corresponding systems. We have chosen this way of con-
trolling, because SSH is ubiquitous and very robust. The
depicted class Module is representative for any plugin mod-
ule used in HYDRA. One task of such a module is to provide
a list of node configurations (as Node classes) which are used
to create virtual nodes during the setup. If the generic setup
of all virtual nodes is done and the CallbackReceiver has
recognized callback events of all nodes, this module takes
over control of the emulation process and can control con-
nections between nodes and the behavior of the nodes.

Two plugin modules are available so far. The default mod-
ule generates a given number of unique virtual nodes and
distributes them to the slave instances. Additional, a choos-
able mobility pattern provides a virtual movement with vir-
tual meetings between the nodes. The virtual movement is
simulated by static connections, playing a predefined trace
or a random walk mobility model for infinite emulation (see
section 4). The second module realizes a special setup for
DTNs. It generates several nodes out of a predefined logfile
of a modified ONE Simulator [15] and replays the connectiv-
ity history. In addition to connection up and down events,
the generation of bundles is interpreted and executed on the
virtual nodes. With this module an evaluation of routing
algorithms is possible and comparable to the results of the
ONE Simulator.

To manage the whole setup, a bunch of utility modules
provide access to virtual machine and node control func-
tions. With them it is possible to prepare and customize
the given software image for running as a distinct virtual
node on a slave. Figure 3 shows the general flow of the Hy-
DRA software. The very first action of the simulator is to
define the environment for the run by reading setup-specific
configuration files and setup a control connection to each
configured slave which is used to send commands and upload
files. In the next step, a prototype image is generated out of
a image file specified in the setup configuration and custom
preparation scripts. Normally the creation of the prototype
image involves the installation of additional software needed
on the virtual nodes and configuring everything that is not
node-dependant. Once the upload of the prototype image
to the slaves is done, the second preparation of the images
is started. This includes making a node unique by setting
the hostname and the network configuration parameters and
embedding a callback mechanism which connects the mas-
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Figure 3: HYDRA general flowchart with three stages: setup, prepare, and run

ter after the virtual node booted up successfully. To shorten
this step, we do this on all slaves in parallel.

Right after the preparation stage, the run stage of the
emulation is started. This creates and configures the virtual
machines in VirtualBox and starts each virtual node on the
assigned slave. As in the preparation step before we do all
this in parallel. After bootup each virtual node executes
its callback script embedded in the init process. This script
sends a ready signal to the master, which is waiting until
the signals of all virtual nodes are received. Finally, a con-
trol connection is established to each virtual node. When
this process is finished, the run routine of the selected mod-
ule is executed and takes control over the whole emulation.
This module has complete control over all virtual instances
and can trigger any simulation specific events on the virtual
nodes. By default an movement module is started which
emulates connection up and down events between different
nodes. After the simulation is completed or interupted, the
cleanup phase begins. This includes the collection of gen-
erated data on the nodes and finally the shutdown of the
virtual nodes on all slaves and the deletion of the virtual
machine configurations.

For easy monitoring and debugging HYDRA provides two
mechanisms. To have a central place to monitor and log the
activity of all nodes, each node is automatically configured
to report their syslog messages to a remote syslog daemon
on the master. Additionally, each virtual node is accessible
through a virtual remote desktop protocol console (VRDP).
This enables debugging of wrong configurations or defect im-
ages during the startup phase and enables live manipulation
of a single virtual node.

4. MOBILITY AND CONNECTIVITY

In order to simulate wireless networking scenarios it is
essential to have some sort of topology control. HYDRA con-
tains functions to explicitly allow or forbid packets to travel
between an ordered pair of virtual nodes. This is realized
by the use of iptable rules on the virtual nodes themselves.
While this is putting part of the simulation semantics inside
the virtual nodes, the advantage is scalability: Setting the
iptable rules through SSH consumes almost no CPU time

on the master and the processing overhead for executing the
iptable rules is distributed evenly through all slave nodes. A
centralized approach, where all virtual nodes are tunnelled
to a central point managing the network topology, would
increase latencies and the load on the node managing the
topology.

HYDRA’s topology control primitives are used by mobil-
ity or logfile playback modules. HYDRA includes a bounded
Random Walk as standard mobility model. Area, range,
speed, time between changes of direction and resolution of
the model can be configured. The velocity of nodes is distri-
buted uniformly between a minimum and maximum speed.
However, instead of reimplementing every standard mobility
model in HYDRA, the preferred way is to playback movement
or connectivity information from specialized tools, such as
SUMO[17] or realworld traces like those found in the CRAW-
DAD archives[16]. For this HYDRA includes two basic topol-
ogy controllers, which can be easily extended to support ar-
bitrary formats: The Connectivity topology controller does
not care for node positions or ranges, instead it expects
events describing at which timestamp a connection between
two nodes goes up or down. We implemented a module
that uses the Connectivity controller to playback traces that
where obtained by running a simulation in the ONE. The
other controller is the generic mobility controller: It expects
events describing the position of nodes at certain times-
tamps. This information is used to derive the topology based
on radio range.

The playback modules have the ability to compress or
stretch time by a constant factor. The nodes in HYDRA al-
ways run in real-time, that is, there is no concept such as
“simulation time”. This means for simple scenarios the vir-
tual nodes might spend a lot of time idling between inter-
actions. Speeding up mobility traces allows to get qualita-
tively the same results in a shorter time. Similarly, when the
virtual nodes are overloaded, dilating time lengthens con-
tact times and gives the nodes more time for processing. It
should be noted, that without further measures speeding up
the simulation by a factor of 2 means effectively halving the
bandwidth and vice versa.

To get a more fine grained control over link parameters



netem [12] could be used. In cooperation with Linux’ ipta-
bles and QoS facilities netem is able to limit the bandwidth
of connections and introduce packet loss and delaying. We
already included support for netem into the OpenWRT im-
ages we use, however as of yet there is no framework in
HYDRA to centralize the control and configuration of netem.

S. EXPERIMENTAL SETUP

For all experiments the master node was a standard PC
with an Intel Pentium 4 CPU running at 3.20 GHz, 2 GiB
RAM and a 160 GB SATA harddisk. The CPU uses hy-
perthreading but does not support Intel VT virtualization
extensions. Ubuntu 9.10 (kernel version 2.6.31) was used as
operating system. For experiment 1, one equivalent machine
was used as slave node. For experiment 3, two equivalent
machines where used as slaves, with the master acting as a
third slave in addition to managing the whole simulation.
For experiment 2 we used a pool of 10 computers as slaves.
Those machines were equipped wit a dual-core Intel Pentium
4 D CPU running at 3.2 GHz with 2 GiB of RAM. VT-x vir-
tualization extension are supported by this CPU. The slave
nodes where booted with HYDRA’s customized Linux distri-
bution directly from USB flash drives as explained in section
3.1. The internal harddisk has not been used.

The principal network setup for all experiments was equal
and is depicted in figure 1. All slave nodes had Suns Virtu-
alBox, version 3.1.6 installed. All virtual nodes where con-
figured to a separated 192.168.56.0/24 subnet. The virtual
nodes used a standard image of OpenWRT 8.09 (Kamikaze)
and where provided with 32 MiB RAM and one virtual NIC.
The NIC was bridged to an ethernet interface on the host
machine which was connected to the other slaves and the
master through an unmanaged ethernet switch.

Experiment 1: Slave scalability

In order to show the principal scalability of our approach, we
used a simple testcase to determine the responsiveness of vir-
tual nodes. We used one slave node and gradually increased
the number of virtual nodes hosted by the slave. The virtual
nodes where idling to make sure we only measure overhead
from our setup. On the master, all virtual nodes are mon-
itored by SmokePing®, which probed all virtual nodes and
the slave with 20 56 Byte ICMP Echo packets every 60 sec-
onds. As a baseline we included one physical node into our
simulation, which is also monitored by the Master, to make
sure that any changes in responsiveness where not caused by
load on the Master. The physical node chosen was an Ubig-
uiti RouterStation Pro board, which is the premier devel-
opment platform for IBR-DTNJ[8]. The RouterStation Pro
includes a 680 MHz MIPS 24k core and 128 MiB of RAM.
The integrated Ethernet port was used to connect to the
test network.

Experiment 2: Mobility enabled DTN simulation

To test HYDRA’s capability to run a big simulation with cus-
tom software we setup an emulation run with the IBR-DTN
software. The goal is to observe the behavior of each single
node in a realistically sized DTN setup. The DTN stack
software itself reports connections and bundle deliveries to
the syslog. We ran 100 virtual nodes with Random Walk
mobility. The area was 2000 m x 2000 m, the speed of nodes

3http://oss.oetiker.ch/smokeping/
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was uniformly distributed between 0.75m/s and 1.25m/s.
Radio range was set to 100 m, and nodes changed direction
every 180s. The mobility model was simulated with a res-
olution of 5s. All DTN daemons continuously logged their
current neighbors, and a data packet has been injected into
the network, measuring the time until it reaches its destina-
tion.

Experiment 3: Repeatability of simulations

Being a testbed, conceptually experiments are not completely
repeatable in HYDRA. In contrast to a pure simulator, where
starting the simulation with the same random seed yields
exactly the same results, with HYDRA running instances of
non-realtime operating systems under virtualization on top
of another non-realtime OS can lead to different characteris-
tics on each run. However, on a macroscopic level results for
the same simulation setup should be the same at least qual-
itatively and preferably have a high degree of quantitative
consistence as well. To evaluate the stability of HYDRA’s
simulation results we performed the following experiment:
We simulated 18 nodes in an area of 1200 m x 300 m using
a connectivity trace generated by the random walk mobility
module. Radio range was set to 100m, node velocity was
uniformly distributed between 0.75m and 1.25m. Nodes
changed direction every 180s. The resolution for the mo-
bility model was set to 2s. After the simulation has been
running for 300s, a packet of size 1 MiB is injected. The
payload was injected at node 11 which was at that time at
coordinates 141:256. The destination was node 7, which was
at injection time at coordinates 1135:131. The time until the
packet arrives at the destination was measured and the route
the packet travelled was logged. We compared the results to
a similar setup running within the ONE. This configuration
was run on a single slave running all 18 nodes, two slaves
with 9 virtual nodes per slave and 3 slaves with 6 virtual
nodes per slave. Additionally, for each number of slaves, we
did two runs where we speed up movement of nodes by a
factor of 2 and 4 as explained in section 4.

6. EVALUATION

Experiment 1: Slave scalability

The ping setup shows the scalability of our approach for a
single slave node. As the virtual nodes where idle during
this measurement, we are basically measuring overhead for



virtualizing the nodes and the network. Figure 4 shows the
ping response times for the physical node, the slave hosting
the virtual machines and the virtual nodes themselves. The
figure shows average roundtrip time (RTT) as well as max-
imum and minimum RTT. It can be seen that the RTT for
the physical and slave Node stay around 180 us for any num-
ber of virtual nodes with negligible jitter. This shows that
the master is not overloaded with controlling and monitor-
ing the virtual nodes and that the slave hosting the virtual
nodes is not overloaded either. Ping response times for vir-
tual nodes increases from 340 us with 1 virtual node to 770 us
with 20 virtual nodes. Also note that the jitter increases sig-
nificantly from 44 ps with 1 node to 440 us with 20 nodes.
On average on the slave each additional VM takes 56.3 MiB
RAM and consumes around 4 % CPU when idling, leading to
1126 MiB RAM usage and around 80 % CPU usage (200 % is
the maximum for the hyperthreading single-core CPU) for
a run with 20 Virtual Nodes.

While, of course, the amount of nodes which can be used
on a slave is greatly dependent on the amount of resources
used by the application running on the virtual nodes this
measurement shows that from virtualization overhead alone
it is feasible to host 10 to 20 VMs on a single slave. Also, be-
cause in its standard configuration OpenWRT does not need
much RAM, the number of virtual nodes seems to be more
CPU bound than memory bound. Depending on the appli-
cation the jitter has to be taken into account, e.g. when test-
ing time synchronization schemes, however in absolute terms
the response times and jitter are still very low compared to
times that are to be expected in internet applications which
are in the area of 10ths of ms.

Experiment 2: Mobility enabled DTN simulation

We injected a packet into the DTN network to test the mo-
bility model and DTN operation. The packet started at node
0 with node 1 as destination. A simple epidemic routing [24]
scheme was used. The situation after injection is depicted in
figure 5(a). The figure shows the radio range for node 0. In
this setup all nodes have an equal radio range. After 20 min
the packet reached the target node. The shortest path from
target to destination leads through nodes 28 — 4 — 33.
Figure 5(b) shows the topology at the time the packet is
received by the target. Again we plotted the radio range of
node 0 as reference. Purple nodes are already in possession
of the test packet.

This experiment shows that HYDRA is capable of simu-
lating meaningful experiments, of such a size that would be
very difficult to handle when using a completely manual ap-
proach. The required effort for setting up this experiment
was small: Setting the correct Random Walk parameters
and the installation of the IBR DTN software is achieved
through standard HYDRA configuration files. The slaves
where booted using our live USB Linux, without any fur-
ther configuration. The only manual task was giving the
master a list with the IP addresses of all slaves.

Experiment 3: Repeatability of simulations

The results of the robustness test are given in table 1. In
the table n is the number of slaves used, f is the factor
by which the mobility model has been speed up, t is the
time in seconds until the packet arrives at the destination
and t, = f -t is the normalized time to make runs com-
parable. The last column shows the route the packet has

taken. The reference run simulated using The ONE took
18 min and 53 sec of simulation time until the packet arrived
at its destination, the route taken by the simulation was
11—+3—+5—-16—-9—=2—1—=7. It can be seen that
with regard to the route taken the results from all runs di-
stributed on 2 or 3 slaves were correct. Additionally the run
on a single slave with normal speed was correct compared to
the reference simulation from the ONE. However the packet
delivery times reported in the table are between 17 min:20s
and 19min:28s. This is not an indication of unstable simu-
lation results, but rather due to our measurements method:
When logging the network we used information from the sys-
logs of the virtual nodes. Unfortunately, after being started
and synchronized to the host clocks, the virtual machine
clocks can drift apart. This is a common problem under vir-
tualization [3]: The virtual clocks can loose ticks when the
host machine is busy. In HYDRA this happens when many
VMs are busy, especially when all virtual nodes are booting
simultaneously. To get better results a NTP client could
be installed in each virtual node or the VirtualBox software
suite for Linux guests could be used. We observed differ-
ences up to 3 min between different virtual nodes at the end
of a simulation. With regard to this, all normalized times
for the correct runs reported in table 1 can be considered
the same within our measurement accuracy.

The runs with increased speed on a single slave fail to
use the correct route, even though they get the packet de-
livered eventually. This is an indication that the slave was
overloaded. Increasing the playback speed of the connec-
tivity log also means that contact times are shorter. The
virtual nodes are not able to perform all needed transfers
in the shortened time. We also found that in these cases
the results are less stable, e.g. the route chosen changes on
subsequent runs using the same setup.

The following effects explain simulation instabilities: Imag-
ine a very short contact time of 2. This is the shortest pos-
sible contact time in single speed when the mobility model
has been rendered with 2 s resolution. For the higher speed
simulations short contact times are even more probable as
all contact times are halved or quartered. The IBR DTN im-
plementation has a neighbour discovery mechanism which is
based on a broadcast sent every 1s by each node. So for
a 2s contact window two nodes will see each other at any-
time between 0 and 1 after contact, leaving 1 to 2 seconds
transfer time, which is a difference of 100% between those
extreme values. So even when slaves are not overloaded,
it is possible that HYDRA runs will differ between different
runs. This will not happen with a pure simulator, because
if both nodes see each other 1.23s after contact, this will
happen at exact the same point in simulation time in every
run (assuming the simulators random number generator is
seeded with the same number). When a slave is overloaded,
such as is the case for the X2 and x4 runs on a single slave,
this problem can be amplified by the fact that the virtual
nodes are loosing ticks, which means that in reality the dis-
covery interval (and all other times periods the virtual node
keeps track of) can get longer than intended: While the vir-
tual node thinks it has waited only 1s, a longer timespan
has passed in reality, e.g. on the host which manages the
connectivity between nodes.

In light of these measurements, we conclude that in gen-
eral the results of a HYDRA run are not affected by the num-
ber of slaves used, as long as no slave is overloaded. In re-
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Figure 5: Experiment 3 topology

n f t[mm:ss] tn [mm:ss] route

1 1 17:53 17:53 11-3—25—-16—-9—-2—>1—>7
1 2 16:34 33:05 11—-3—-5—-156—>7

1 4 05:30 22:00 11-14—-4—512—-3—>5—>7

2 1 17:20 17:20 1-3—-5—-16—29—-2—>1—>7
2 2 09:04 18:05 11-3—-5—-16—-9—-2—>1—-7
2 4 04:46 19:04 11-3—-5—-16—29—-2—>1—>7
3 1 19:10 19:10 11-3—-5—-16—-9—-2—>1->7
3 2 08:41 17:22 11-3—-5—216—-9—-2—>1—>7
3 4 04:52 19:28 11-3—-5—216—29—-2—>1->7

Table 1: Experiment 3, packet delivery times

ality of course it can be bit tricky to find the point where
the simulation has glitches due to overloaded slaves. Thus,
as with normal simulators we recommend repeating simula-
tions several times and carefully compare and examine the
results and try to explain any differences.

7. CONCLUSIONS

‘We have presented HYDRA, a virtualized testbed support-
ing large scale setups using virtual nodes running a complete
Linux operating system and protocol stack. The process of
setting up testcases for verifying network software imple-
mentations is simple and by providing a bootable live dis-
tribution for HYDRA slaves it is easy to convert temporarily
unused machines into a testbed. By running real operating
systems and application software, the ouptut of HYDRA sim-
ulations can be considered more realistic than results from
purely synthetic simulators. Even though by design HYDRA
can not be completely deterministic, analysis has shown that
HYDRA’s results are robust and repeatable on a macroscopic
level even when using different setups. The source code of
the HYDRA system will be made available under an open
source license.

There are still opportunities for optimizing and extend-
ing HYDRA: The current setup uses full hardware virtual-
ization. Network I/O performance could be improved by
using the VirtualBox “virtio” network card which needs a
para-virtualized virtio network driver for the guest. In fu-
ture versions of HYDRA we plan to add support for netem
[12] (see section 4). While the proposed usage of netem is
distributed across all virtual nodes, a more strict and syn-
chronized control over link parameters is possible using a
centralized approach. By routing all connections through a
central node, network emulators such as nistnet[6] could be
used. This would provide a more accurate link characteris-
tic simulation at the cost of scalability. For applications and
protocols based on geographic data, a virtual GPS can be
used to generate simulated positions for each virtual node.
With this mechanism GPS based routing algorithms could
be simulated in HYDRA. Instead of virtualization, a hard-
ware emulator such as QEMUJ[5] could be integrated into
HyDRrA. This is the only way to emulate software running
on special nodes like sensors or embedded hardware at the
cost of reduced performance.
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